A Guest Facility for Unicos*

Dennis M. Ritchie

Bell Laboratories
Murray Hill, NJ 07974

The COS system for Cray’s X-MP series supports a guest facility, under which Unicos, their version
of Unix® System V, can run as a subsystem in a fixed partition of the machine. The guest facility is
unavailable when Unicos acts as a stand-alone system. This paper reports an experiment in which the
author and David Slowinski added a limited version of the guest facility to Unicos, so that it can run itself
as a subsystem.

COS'’s guest mechanism is analogous to that provided by other virtual-machine schemes, such as
IBM’s VM system, but is not as general. Cray supports it as a transition aid for sites converting to Unicos,
and so far as | know, Unicos is the only guest system that has used the facility. As described below, Unicos
is specially written to make it run as a guest, but the same binary system image runs both as a guest and in
native, stand-alone mode. The main limitation in practice is that the machine is strictly partitioned
exactly one CPU is dedicated to guest Unicos, and the memory and disks are split statically. There is also
some overhead in doing I/O in the guest system, but it is relatively small. The real penalty is the partition-
ing of main memory, and to a lesser extent the dedication of the CPU.

Providing one accepts its limitations, the guest facility is convenient for its intended purpose. At
AT&T Bell Laboratories, for example, we ran guest Unicos on an X-MP/24 for 18 months before finally
converting to the native Unicos environment. This path was followed for several reasons: we started with
an early, not especially stable version of Unicos to which we made many changes, and control and use of
the machine was shared between a company-wide computation center that sought stability and a research
organization that was willing to experiment. Using the guest facility, existing COS applications could be
moved gradually to Unicos, which benefited the computer center and its customers.

Our Unicos system developers, however, valued the guest facility mainly because it simplified test-
ing. It was possible to reboot and try new versions of Unicos merely by submitting remote COS jobs, an
operation readily automated; the process took a minute or two. Although doing this required chasing away
the Unicos users, they were mostly from our own organization and arrangements could be informal. In par-
ticular, rebooting Unicos did not disturb the paying customers of the computer center.

Converting to native Unicos operation significantly impeded system development work; we were
back in a world more normal for expensive machines, in which development takes place at most a couple of
evenings per week, announced well in advance. Therefore, we decided to create a mechanism by which
Unicos could support itself as a guest system.

How Unicos Works

The Cray hardware does not make it possible to create a true virtual machine in the style of IBM's
VM system. That is, one cannot take an arbitrary standalone operating system and create a cocoon around
it so that it believes it is in sole control of the machine. However, certain aspects of the hardware, and the
style in which it is used, do ease the job of running Unicos as a guest. The great advantage is that most I/O
operations are done through a separate processor, the 10S, and the CPU conventionally communicates with
the 10S by sending messages to it. Thus I/O operations, which are often the most problematical aspects of
a VM system, are readily handled if the communication with the 10S can be intercepted and the 10S

Presented at USENIX Conference on Supercomputing, Pittsburgh, PA, Sept. 1988.



operations simulated. Another complicated aspect of a virtual machine system, paging and virtual memory,
is avoided simply because the hardware doesn’t support it even for native systems.

Unicos, in particular, was already written to run as a guest. In native mode, I/O is accomplished by
sending request packets to the 10S through a CPU channel. Guest Unicos instead leaves these same request
packets in a conventional memory buffer and signals the host system by executing a trapping instruction.
The device drivers are written in a style that prepares request packets and passes them to a low-level com-
mon routine; this routine is one of a handful of places that cares whether Unicos is running as guest or in
native mode.

When guest Unicos needs assistance from its host system, it places a request code in a register, and
executes a “normal exit” instruction, just as system calls are specified by user programs in a conventional
operating system for the X-MP, whether COS or Unicos. The only real difference is that Unicos’s requests
on its own behalf are much simpler than the facilities it provides to its own users.

Thus the key to making Unicos run as a guest under itself is to build an interpreter for these requests.
There seemed to be two approaches to doing this. One way was to add the interpreter to the Unicos kernel.
In this model, a normal-exit trap executed by a distinguished guest process in simulated monitor mode
receives special treatment. 1/O packets extracted from a communications area are sent (after minimal pro-
cessing) directly to the IOS or elsewhere. This is precisely the way COS handles things, and it is appropri-
ate when performance is important. It is difficult to develop and debug a system based on this approach,
however, because all the work is done in the system kernel. Instead, we decided on a scheme that is less
direct, and less efficient, but moves the work of the simulator into an ordinary user-mode program and
requires few kernel changes.

Kernel Changes

The two related kernel changes required to create our guest facility are modeled on the ‘exchange’
mechanism of the hardware. An exchange package, in Cray’s terminology, is a data structure containing
the most important user-visible registers and a collection of internal machine state variables, including the
base and limit registers used for memory mapping. When the machine changes state, because of an
internally-generated trap or an exogenous interrupt, the active exchange package is swapped with a new
exchange package from memory. The usual operating system maintains an exchange package for each run-
ning user process, and one per processor for kernel execution.

A new system call, nameeixguesttakes as operands a hardware exchange package and a pointer to
storage for machine registers not contained in the exchange package. The new call swaps the contents of
the argument exchange package and registers with the system’s copy of exchange information and registers
for the calling process, and then begins execution using the new exchange package. In effect, it forces an
extended version of the hardware exchange sequence, and is used to hand control from the simulator pro-
gram to the simulated guest operating system.

Another change, needed to arrange proper return épguestaffects the handling of exchanges into
the kernel. Previously, these had always been treated by Unicos as device interrupts, or exceptions (like
floating-point errors), or as Unicos system calls (normal exit traps). With the change, the system consults a
new flag to determine whether the running process is under control of a guest operating system (that is, has
executed thexguestall). If the flag is set, traps incurred are not treated normally, but instead generate a
return from the simulator programexguestcall; during the return, the exchange information passed to
exguests changed to reflect the state of the hardware at the time of the trap.

Of course, this description is simplified. The exchange package passsduesmust be checked
for legitimacy, because it will ultimately be turned over to the hardware. The most important complication
is that the base and limit values in the exchange package must be adjusted properly. When finally pre-
sented to the hardware, they must represent absolute machine addresses, while the addresses generated by
the simulator are relative to itseliExguestmust arrange that these addresses are relocated properly, and
that the locations available to the simulated operating system and its users fit within the address space of
the simulator.



The Simulator Program

The simulator program runs as an ordinary user process. It does not need special permissions except
that, as described below, it may be useful to allow it to read disk devices that most users cannot access
directly. It begins by allocating a large amount of memory to serve as an arena in which to run the simu-
lated operating system, and loading the operating system code into this space. The main loop of the simula-
tor repeatedly hands control to the guest system ®utuestpn return, it examines the resulting exchange
package to see what is being requested. Requests fall into two classes: those from the simulated operating
system itself, which either map into appropriate I/O operations or ask to run a user program, and traps
incurred by user-mode programs running inside the guest operating system. These are treated simply by
forwarding control to the guest operating system.

More explicitly, the flow of control in the simulator program can be illustrated by the following
pseudo-code:

forever {

exguest(kernelXP)

if kernelXP.requestreg == IOREQUEST
dolO

else if kernelXP.requestreg == RUNUSER
exguest(kernelXP.paramreg)

else
panic

}

That is: exchange to the guest kernel; when it exchanges back, it is either requesting an 1/0O operation, or
running a user program. In the former case, it suffices to do the needed I/O and continue. In the latter, the
request carries a parameter specifying the desired user exchange package. Thexsgwesidall in the

example exchanges control to this simulated user process, and returns when the process makes a system call
or incurs some other trap. The user exchange package, which resides in the simulated kernel's address
space, is updated by the exchange, so it suffices merely to continue; the guest kernel will process the user’s
system call or trap.

The guest kernel handles 1/0O operations by bundling parameters into a queue in a conventional spot,
and thedolO routine pulls requests out, does the transmission, and updates a reply queue. The requests are
elementary; they specify a device, an address within the device, the transmission direction, a memory
address, and a count. In order to make the simulator useful at all, the devices and their addresses have to be
mapped somehow into a real file system on a disk or SSD. Therefore, the simulator contains a table
indexed by device and sector address range that yields a Unicos device name and offset. A side table con-
tains file descriptors for devices that have previously been used by the simulator. When the guest system
refers to a sector on a particular device, the main table is consulted to map the request into an address
within the corresponding Unicos device file; ordinary Unicos I/O calls are used to read or write the
requested information, after opening the device if necessary.

By setting up the simulator tables appropriately, it is possible to control access to all the disk and
SSD storage on the machine, and in particular for the simulator to see the devices on which user’s files are
kept. However, the simulator accesses file systems directly, through the raw disk device, and thus bypasses
Unicos’s cacheing strategy. The simulator should not be allowed to write a disk partition that is also
mounted as an ordinary file system. One simple way to manage things is to create a root partition, contain-
ing a near-copy of the real root, for the simulator’s exclusive use. A few files in the simulator’s root file
system are modified; for example, the script that mounts new file systems after startup mounts user file sys-
tems read-only, so that the simulator never attempts to change them.

Asynchronous events

The scheme described above for I/0 works well for operations on the disk and SSD that complete
quickly and can be made synchronous. Some kinds of 1/0O, and other things, occur asynchronously and
must be handled by other means.

Console output, which is specified by a special kind of 10S packet, is straightforward, but input



occurs asynchronously, and waiting for it must not block the simulation. Therefore, the simulator loop
above must be supplemented by code that checks its standard input for characters every now and then.
When it finds any, it generates an appropriate packet, and inserts it into the packet-input queue of the guest
system. Similarly, Unicos expects to receive clock interrupts periodically. Therefore, each time around its
loop, the simulator checks the real-time clock, and if it has advanced sufficiently, simulates a clock inter-
rupt by setting the appropriate bit in the kernel exchange package. Fortunately, Unicos is written in such a
way that it is insensitive to wide variations in the frequency of clock interrupts, so there is no need to be
concerned about timing them precisely.

Limitations

The current simulator is a crude program, and is not at all suitable as a production tool, as the COS
guest facility is. It is useful for system development.

There is an unavoidable cost in using our approach, in that I/O operations in the guest system turn
into ordinary Unicos I/O calls in the simulator. This means they are much slower than they would be if the
simulator were integrated into the operating system itself.

Moreover, the only I/O devices we support are the console (and only one console), the disks, and the
SSD. In our installation, we use a low-speed CPU channel to interface to our Datakit® network, and this
channel is not included in the simulation. The problem here is not the simulator itself, as much as is the
interface to Datakit presented by the operating system. It appears to user programs as a set of devices each
referring to a single virtual circuit on the network. However, the low-level interface to the hardware
involves messages specifying the circuit number. The operating system does not provide a raw Datakit
device in same way it does for disk devices. Equally important, Datakit circuit setup involves communica-
tion with a network controller, and the controller software does not provide a way of managing two inde-
pendent sets of connections (host and guest) over the same physical channel.

A process running as a guest operating system is an ordinary Unicos process, and necessarily is large,
because it must contain not only the operating system code but also enough memory for its own user pro-
grams. While it is active, it swaps against the rest of the system load. Moreover, the simulator (as written)
has two unappetizing choices in managing its CPU usage. Either it runs all the time, faithfully simulating
the idle loop, or it detects that the guest system is idle and waits a bit. Unfortunately, the obvious ways of
waiting encourage the real Unicos system to swap the simulator out, or otherwise delay it. The former
burns one whole CPU, the latter makes it quite slow. Of course, this situation resembles the one we
accepted while we were running guest Unicos in production, but now the production programs use more
memory, and the accounting statistics show the simulator CPU usage explicitly. Nevertheless, the simula-
tor load is quite perceptable to the users, and they are not always assuaged by assuring them that a year or
so ago they would not have been able to run their programs at all, or that the alterative is dedicated develop-
ment time.

Summary

Our intent in creating a Unicos guest facility was to make it possible to do system development with-
out disturbing production users, not to build a a mechanism that itself would permit running production
codes. Even so, there remain many loose ends. For example, as discussed above, our networking hardware
is not supported. Nevertheless, it is useful for its intended purpose, and it is much easier to check the
integrity of new system code under the guest mechanism than to arrange for standalone development time.
Also, the scale of the project was small. The user-level simulator program contains only about 500 lines of
C code, and the operating system additions total less than 200. The effort seems well repaid.



